
www.manaraa.com

Vol.:(0123456789)1 3

J Comput Aided Mol Des (2017) 31:301–304 
DOI 10.1007/s10822-016-9997-x

The need for scientific software engineering in the pharmaceutical 
industry

Brock Luty1   · Peter W. Rose2 

Received: 23 July 2016 / Accepted: 8 December 2016 / Published online: 19 December 2016 
© Springer International Publishing Switzerland 2016

We first started applying rigorous scientific software 
engineering practices in the early 90s. Agouron pharmaceu-
ticals had just lost a number of CADD scientists that had 
been writing code. Their software was written using differ-
ent styles and in most cases, they were the only ones able 
to repair and extend their code bases. Often the code con-
sisted of commercial and academic codes glued together by 
scripts to solve a specific problem without reuse in mind. 
Thus a lot of effort was completely lost.

Following this catastrophe, a significant decision was 
made to follow good software engineering practices by a 
sub-group of CADD. This team made a concerted effort to 
write a common software library as the foundation for all 
in-house software applications. Everyone on the team was 
on the same roadmap, with coding standards, code reviews, 
and employing true software engineering practices (see 
below). We then developed applications using these librar-
ies in a way that the applications could easily be combined. 
This allowed us not only to quickly try out new ideas that 
appeared in the literature, but also explore our own propri-
etary ideas in a robust and straight-forward fashion.

In the longer term, informatics skills and other enter-
prise software engineering skills were also introduced 
and the “ADDS group” was deeply involved in produc-
ing some of the most innovative and widely used tools at 
Pfizer. The Pfizer crystal structure database [1] allowed 
crystallographers to submit asymmetric units which were 
automatically prepared for SBDD (oriented in a project 
reference frame, optimized hydrogen networks, etc). The 
CCT services framework allowed computational chem-
ists and other scientists to publish protocols (shell scripts, 
Pipeline Pilot Protocols, etc) and have the methods imme-
diately exposed in the desktop applications. MoViT [2] is 
very powerful and user-friendly interactive 3D ligand and 
structure-based drug design application, which was directly 

Abstract  Scientific software engineering is a distinct 
discipline from both computational chemistry project sup-
port and research informatics. A scientific software engi-
neer not only has a deep understanding of the science of 
drug discovery but also the desire, skills and time to apply 
good software engineering practices. A good team of sci-
entific software engineers can create a software foundation 
that is maintainable, validated and robust. If done correctly, 
this foundation enable the organization to investigate new 
and novel computational ideas with a very high level of 
efficiency.

Keywords  Scientific software engineer · Research 
software engineer

Introduction

Computer-aided drug design (CADD) is a broad field 
including the traditional computational chemists who 
directly support discovery projects. These computational 
chemists are essential to drug discovery and make up the 
vast majority of what is recognized as CADD. However, 
there is a sub-type of CADD scientists who also have infor-
matics and software engineering skills. This class of scien-
tist could rightfully be differentiated as scientific software 
engineers (SSEs).

 *	 Brock Luty 
	 bluty@dartneuroscience.com

1	 Department of Scientific Computing, Dart NeuroScience, 
LLC, San Diego, CA 92131, USA

2	 RCSB Protein Data Bank, San Diego Supercomputer Center, 
UC San Diego, La Jolla, CA 92093, USA

http://orcid.org/0000-0003-0486-8352
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-016-9997-x&domain=pdf


www.manaraa.com

302	 J Comput Aided Mol Des (2017) 31:301–304

1 3

linked to the Pfizer crystal structure database and the CCT 
Services. These tools along with many other algorithms 
(e.g., AGDock [3] for docking, HTS [4] for scoring) are 
heavily used directly or indirectly via CCT Services by 
almost all discovery scientists. Having a small group pro-
duce this type of enterprise software was in a large part due 
to a dedication to following good software engineering and 
database design practices to create robust and maintainable 
software systems.

What is a scientific software engineer?

A scientific software engineer (SSE) is typically a PhD 
Scientist with a background in computational chemistry, 
computational biology, physics, or related fields. They, like 
many of their counter-parts in CADD, have a deep under-
standing of the physics of receptor-ligand interactions and 
the physical and biological behaviors of molecules. Occa-
sionally SSEs are experts in other fields like statistical 
mechanics, machine learning, and enterprise informatics.

But the difference from the SSE and a traditional CADD 
scientist is in the way they develop software. A good SSE 
takes as much pride in their software engineering skills as 
they do in their scientific abilities. They make sure that the 
code that they write is exactly the kind of code that they 
would like to inherit. They have the ability to write code in 
a way that models the true science which makes it easier for 
another SSE to understand and maintain. They trade short 
term gains for long term benefits to the entire organization.

SSEs work as a team. All source code is shared among 
the team, with no duplication of effort and no direct “own-
ership” of any particular part of the source code. Ideally 
every piece of source code that is committed is reviewed 
by at least one other member of the team so the entire code 
base is understood by more than one engineer.

Scientific software engineers use best-practice soft-
ware engineering techniques. This includes knowing how 
to gather requirements using their scientific abilities. SSEs 
also know how to design software that fits with the cur-
rent architecture and how to leverage existing well-tested 
libraries to minimize the code they have to write. Designs 
are reviewed by the team to reach a consensus and/or 
approval from the principal architect all before any coding 
is done. SSEs use proper tools to support the construction 
of software including (1) issue tracking with prioritization, 
assignments and milestones (2) source code control which 
is ideally integrated into their development environment 
with each source code commit connected to the issue it 
resolves, (3) thorough unit and integration testing, ideally 
integrated with an automated build system that runs all tests 
upon code commits and (4) a staging process that involves 
migrating software from development to testing to staging 

and finally to production without any kind of recompila-
tion or other changes. Databases for transactional data are 
designed in third normal form with proper constraints, to 
ensure that referential integrity is enforced. If performance 
is not acceptable, then an ETL system (see below) can be 
used to create a mart that has been de-normalized for per-
formance. Logic is kept all in the source layer and no logic 
is put in the database (e.g. pl/sql). Putting logic in the data-
base layer not only makes it hard to follow the logic in the 
middle-tier, it also greatly complicates the debugging pro-
cess. Also if logic is in the database it greatly complicates 
the deployment process.

Scientific software engineers follow an agreed upon 
software development process like the Agile process. The 
Agile process loosely consists of (1) a daily “stand-up” and 
(2) “sprint transitions”. At the daily stand-up, the entire 
team, led by a “scrum master”, reviews their progress to 
date and describes any “blockers” that are keeping them 
from making progress. At the sprint transition, progress is 
presented to a larger group including demos to the scien-
tist who will ultimately use the software. At these meetings, 
which are typically every other week or once a month, the 
customers of the software give feedback on the progress 
and help prioritize the features and bug fixes for the next 
“sprint”. For additional discussion of different Software 
Processes please see the “Appendix”.

Scientific software engineers use agreed upon rules for 
writing software. Common object-oriented design patterns 
are used where possible. Usually some kind of coding style 
is introduced based on established standards. Templates 
and guidelines for starting a new project in a given technol-
ogy are documented and followed. Occasionally “Manifes-
tos” to describe how certain technologies should be used 
are written. An example would be the rest services tech-
nology [5] which is a critical technology, but has a speci-
fication that leaves a number of choices to be made during 
implementation. A Rest Manifesto can complete the speci-
fication so code is easier to maintain and it fits within the 
desired architecture.

Commercial options

Many may think that scientific software engineering can 
be replaced by commercial vendor’s applications. This is 
true to an extent, but with the advent of the pure “button-
pushing” applications, there can be a lot of confusion about 
what a particular button exactly does. Even worse, a fea-
ture may be purposely obscured with no documentation, so 
there is no way to know exactly what the button is doing. 
These tools can be quite flexible and even allow integration 
points, but at some point it becomes clear that certain tasks 
can’t be effectively done within the “box” that is defined 



www.manaraa.com

303J Comput Aided Mol Des (2017) 31:301–304	

1 3

by the commercial application. Finally, a commercial tool 
is trying to fit all needs and these circumstances typically 
lead to two solutions (1) the “least common denominator” 
solution where only features that can be agreed upon by 
large numbers of users are included which leaves a lot to 
be done manually or (2) the “cockpit” where everything is 
included and figuring out how to use the application can be 
very challenging.

On the other hand, there are very good commercial 
(e.g., OpenEye [6], ChemAxon [7]) and open source librar-
ies (e.g., RDKit [8], BioJava [9], Apache [10]) that can be 
used to save a SSE from having to write low level code like 
SDF, PDB parser, chemical perception code, simple prop-
erty calculation code, etc. Admittedly, libraries can be just 
as opaque as the other commercial applications, but they 
are at a much lower level and can be much more readily 
understood and validated. The library APIs are typically 
documented and may even have example code. This allows 
the SSE to write at a higher logical level where the librar-
ies are used for the more mundane tasks or very specialized 
functions. Working at this level, the SSE has a great deal of 
control and a better understanding about what is happening 
relative to push-button applications.

Importantly, a SSE in the pharmaceutical industry 
typically has access to biological data that has been gen-
erated in a very uniform manner and in large quantities. 
Undoubtedly commercial vendors get access to some data 
from collaborations with pharmaceutical companies. They 
could also use public data, but that comes with a very big 
caveat about the uniformity of the data measurements that 
are used. In our personal experience, developing methods 
using in-house data is far superior to using the public data. 
Additionally, in the right organization, an SSE can even get 
experiments run to help validate algorithms and models.

Finally, writing software in-house can incur a large 
initial cost. However, if the in-house architecture is done 
using solid software engineering techniques, the code base 
can easily be maintained and extended. This saves the 
significant costs incurred with annual licenses and, as we 
have seen in the past can save money even in the 2–3 year 
timeframe.

Aside: getting the new methods to the scientists

Once a new algorithm is built and validated (e.g., predict-
ing ADME or other properties, pharmacophore scoring 
models, structure prediction for a ligand–protein com-
plexes) the next hurdle is to get these algorithms into the 
hands of discovery scientists. In the past, this was largely 
accomplished by a Scientist sending a specific request or 
question directly to the CADD member that developed the 
tool. This process has a number of drawbacks, the CADD 

scientist might be out-of-the-office or simply too busy to 
respond. Also they may accidently forget the request if 
made verbally or even accidently delete an e-mail. Finally, 
if they haven’t used a source code control system and done 
full regressions of every release, there could be errors acci-
dently introduced into the algorithm producing inconsistent 
and unreliable results. Mistakes, of course, can be made 
even if proper software engineering techniques are used, 
but they are much less frequent.

Computational Service Frameworks have evolved at a 
number of Pharmaceutical Companies. Minimally they 
serve as a repository for relevant and, hopefully, validated 
algorithms. Typically computational services frameworks 
also have access to a compute farm to process the incom-
ing requests. At the higher end, a computational services 
framework may also perform automated format conversion 
(e.g., Corp ID to SMILES) and split up a perfectly paral-
lelizable algorithm into chunks of inputs, run the chunks 
on independent compute nodes and aggregate the results. 
This produces the same results for the Scientists but with a 
significantly reduced wait time.

To make this kind of system work the client applications 
(e.g., SAR tool, HTS tool, library design tool, SBDD tool) 
that the scientists use daily, must be made aware of the 
services that are available. If done correctly, new services 
can appear in the client applications without requiring a re-
building and releasing of the application. As another big 
benefit, every application gives consistent results by using 
the available services (e.g., cLogP for a given compound).

It is also important to build the services framework to 
be very scalable and reliable. When done well, it doesn’t 
matter if there is a new service that has an error, the frame-
work will protect itself (e.g., by running the new service in 
a separate process) and can even kill off services that are 
misbehaving (e.g., exceeding their estimated time of com-
pletion). Also, if designed correctly, the services frame-
work can even employ compute clouds like AWS providing 
almost unlimited scalability.

By adding an additional layer on top of the services 
infrastructure it is possible to create an extract transform 
load (ETL) system. This requires introduction of some 
triggering event along with extensions to understand data 
sources and data sinks. The ETL system extracts the data 
from a data source, transforms the data using the service 
and stores the data into a data sink (mart). It is important to 
note that the data sources can be public data and incremen-
tal update systems can be implemented.

With a strong computational service infrastructure a 
“service publisher” can be built that allows not only the 
new algorithms to be exposed but can also run commercial 
applications wrapped in shell or python scripts. At the high 
end, it is even possible to publish KNIME/pipeline pilot 
protocols as new services that immediately appear in the 



www.manaraa.com

304	 J Comput Aided Mol Des (2017) 31:301–304

1 3

desktop applications. This allows all of CADD and other 
technically savvy scientists to publish new methods and 
make them accessible to project team scientists.

Conclusions

Research informatics (RI) is essential to any mature phar-
maceutical company. Typically RI has a number of soft-
ware engineers who can follow good software engineering 
practices. However these software engineers come from 
a broad range of experience and do not necessarily have 
a deep background in Science. When there is a low-level 
of scientific knowledge needed, then this can work well. 
However when the science gets more involved, it can be 
quite difficult for a RI software engineer, to understand the 
business needs as explained by a scientist who may have 
little technical background. This usually leads to very 
costly products that never quite work the way the scientist 
envisioned.

CADD computational chemists typically have a very 
deep knowledge and intuition learned over the years by 
working directly on discovery project teams. Some compu-
tational chemists do code, but this is typically on a smaller 
algorithm or script. It is very difficult for a computational 
chemist covering drug discovery projects to have time to do 
proper software engineering.

The scientific software engineer bridges these two disci-
plines with deep scientific knowledge and the time, desire 
and ability to follow good engineering practices. If there is 
going to be large scale innovation in CADD taking advan-
tage of the growing knowledge base and being carried 
along with the ever increasing abilities of computational 
hardware and commercial and open-source software, scien-
tific software engineers are essential.

Appendix: software processes

Although we didn’t specifically advocate Agile as a soft-
ware process, one reviewer requested more background on 
alternative processes that we have had experience with.

The standard cliché is that having some process is bet-
ter than having no process at all. There are many variables 
and constraints that lead to the choice of a process: is it a 
well-defined problem or will scientific research be required, 
what is the experience level and characteristics of the mem-
bers of the development team, will team members be work-
ing in the same location or even the same time zone, what 
is the flexibility given by management to try new processes.

We have been involved in very simple processes to very 
complex processes. One simple process was very effec-
tive with highly experienced software engineers. Basically 

a white-board discussion would take place and then the 
developer would write a “one-pager” describing what they 
understood the problem to be, and how they were intended to 
solve it. One complex process that we investigated was called 
“clean room” where each developer would have to mathemat-
ically prove how a piece of code would behave for all possi-
ble input parameters. This is a process we would not recom-
mend because the resulting quality was not worth the amount 
of time and effort required.

We have experimented with hybrid processes where we 
mixed-and-matched techniques based on how to most effec-
tively use the development resources. We mentioned Agile 
above as a process, but even in that case it has been adapted 
to fit the development teams needs. For example, we do not 
do pair-programming but instead every check-in is carefully 
reviewed by another developer. The daily scrums seem to 
work well, but we no longer make them pure stand-ups lim-
ited to 10 min. They are still short (less than 30 min) but they 
do include longer discussions about over-all design and are 
not strictly about what is underway or blocking. The sprint 
transitions are highly effective, they keep the developers 
motivated to reach the milestones and they give the users a 
chance to see the product as it grows and make changes and 
re-prioritize if needed. The drawback to the way we do agile 
is that it becomes difficult to predict overall timelines which 
are highly dependent on what changes the users would like. 
We are still trying to understand this and be able to better pre-
dict overall timelines.

Again, we did not advocate the Agile process will work 
well for all. The process that is most effective for a software 
team depends on the software teams and the environment.

References

	 1.	 Gehlhaar D, Rose P, Luty B, Cheung P, Litman A. The pfizer crystal 
structure database: an essential tool for structure-based design at 
Pfizer (submitted for publication)

	 2.	 Howe JW (2008), An integrated desktop computing environment for 
medicinal and computational chemists, ACS National Meeting, 
17–21 August, #236—technical sessions http://www.acscinf.org/
content/236-technical-sessions

	 3.	 Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, 
Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW 
(2000) Deciphering common failures in molecular docking of 
ligand–protein complexes. J Comput Aided Mol Des 14:731–751

	 4.	 Marrone TJ, Luty BA, Rose PW (2000) discovering high-affinity 
ligands from the computationally predicted structures and affinities 
of small molecules bound to a target: a virtual screening approach. 
Perspect Drug Discovery Des 20:209–230

	 5.	 Fielding RT (2000) Chapter 5: representational state transfer (REST). 
Architectural styles and the design of network-based software 
architectures (Dissertation). University of California, Irvine

	 6.	 OpenEye Scientific Software. http://www.eyesopen.com/
	 7.	 ChemAxon. https://www.chemaxon.com
	 8.	 RDKit. http://www.rdkit.org/
	 9.	 BioJava. http://biojava.org/
	10.	 Apache. http://www.apache.org

http://www.acscinf.org/content/236-technical-sessions
http://www.acscinf.org/content/236-technical-sessions
http://www.eyesopen.com/
https://www.chemaxon.com
http://www.rdkit.org/
http://biojava.org/
http://www.apache.org


www.manaraa.com

Journal of Computer-Aided Molecular Design is a copyright of Springer, 2017. All Rights
Reserved.


	The need for scientific software engineering in the pharmaceutical industry
	Abstract 
	Introduction
	What is a scientific software engineer?
	Commercial options
	Aside: getting the new methods to the scientists
	Conclusions
	References


